# **12.4 Intravenous Vitamin C Supplementation**

Question: Does IV Vitamin C supplementation result in improved clinical outcomes in critically ill patients?

**Summary of evidence:** There was 3 level 1studies (Zabet 2016, Zhang 2021, Servanskly 2021) and 12 level 2 studies (Nathens 2002, Razmkon 2011, Fowler 2014, Fowler 2019, Fujii 2020, Chang 2020, Hwang 2020, Iglesias 2020, Lv 2020, Mohamed 2020, Moskowitz 2020 and Wani 2020) that examined IV Vitamin C (ascorbic acid) supplementation either alone (Razmkon 2011, Fowler 2014, Zabet 2016, Fowler 2019, Lv 2020. Zhang 2021); in combination with hydrocortisone with or without thiamine (Fujii 2020, Chang 2020, Hwang 2020, Iglesias 2020, Mohamed 2020, Moskowitz 2020, Iglesias 2020, Mohamed 2020, Wani 2020, Wani 2020 and Servansky 2021) or with α-tocopherol (Nathens 2002).

In the studies of Vitamin C alone, one study compared a daily dose of 24 gms/day (12 gms q12 hrs) to sterile water (Zhang 2021); one compared a low dose of 500 mg/day to high dose of 10 gms/day X 2 days followed by 4 gms/day for 3 days to Vitamin E (intramuscular) and placebo (Razmkon 2011); one compared a dose of 50 mg/kg/day to a higher dose of 200 mg/kg/day and 5% dextrose (Fowler 2014); one compared a dose of 200 mg/kg/day (50 mg/kg every 6 hrs) to dextrose (Fowler 2019); one compared 100 mg/kg/day (25 mg/kg/d Vit C every 6 hrs) to 5% dextrose (Zabet 2016), and one compared 3g of Vitamin C (BD) dissolved into 5% dextrose vs 5% dextrose as placebo.

In the combination studies, 6000 mg Vitamin C (1500 mg q6 hrs) was combined with 50 mg hydrocortisone q6 hrs and thiamin 200 mg q12 hrs (or 100 mg q 6hrs) (Chang 2020, Fujii 2020, Iglesias 2020, Mohamed 2020, Moskowitz 2020, Wani 2020, Sevransky 2021) or thiamin 200 mg q12 hrs only (Hwang 2020) and in one study 1000 mg Vitamin C was administered along with 1000 IU  $\alpha$ -tocopherol q8hrs (Nathens 2002). While in majority of the studies, the control group received either normal saline, dextrose, hydrocortisone or nothing (usual care), two studies did not specify what the placebos were (Razmkon 2011, Sevransky 2021). The duration of the interventions varied across studies and is outlined in table 1.

Table showing daily doses of vitamin C

| Study                                                         | Vit C given in mg/day                                 |
|---------------------------------------------------------------|-------------------------------------------------------|
|                                                               | (using 70 kg weight) but did not account for duration |
| Zhang 2021                                                    | 24000                                                 |
| Razmkon 2011                                                  | Low dose: 500                                         |
|                                                               | High dose: 10,000 (day 1 and 4) to 4000 (day 5,6,7)   |
| Fowler 2014                                                   | Low dose: 3500                                        |
|                                                               | High dose: 14,000                                     |
| Fowler 2019                                                   | 14,000                                                |
| Zabet 2016, Hwang 2020                                        | 7,000                                                 |
| Chang 2020, Fujii 2020, Iglesias 2021, Lv 2020, Mohamed 2020, | 6000                                                  |
| Moskowitz 2020, Wani 2020, Sevransky 2021                     |                                                       |
| Nathens 2002                                                  | 3000                                                  |

**Mortality**: When the data from all the studies were aggregated (12 studies reported on either 28 day or 30 day mortality, 3 studies reported on hospital mortality), vitamin C supplementation was associated with a trend towards a reduction in overall mortality (RR 0.87, 95% CI 0.75, 1.00, p=0.06, test for heterogeneity  $I^2$ =6%; figure 1). Vitamin C supplementation had no effect on ICU mortality (RR 0.96, 95% CI 0.76, 1.21, p=0.72, test for heterogeneity  $I^2$ =0; figure 2) or hospital mortality (RR 0.99, 95% CI 0.78, 1.25, p=0.94, test for heterogeneity  $I^2$ =0; figure 3). For the two studies that compared high dose to low dose vitamin C to placebo (Fowler 2014, Razmkon 2011), the mortality data from both intervention groups was combined in these analyses.

### Mortality subgroup analyses (see figures in attached document)

- 1. Sepsis vs. non sepsis trials:
  - a. **Overall mortality:** There was no difference in the effect of vitamin C supplementation in the trials of patients with sepsis (RR 0.87, 95% CI 0.74, 1.03, p=0.11, test for heterogeneity  $I^2$ =20%; figure 4) from the three non-sepsis trials when aggregated (RR 0.76, 95% 0.46, 1.27, p=0.30, test for heterogeneity  $I^2$ =0%; figure 4) as the test for subgroup differences between the sepsis and non sepsis studies was not significant, p=0.62; figure 4.

# 2. High Dose Vit C (≥10,000 mg/day) vs. low dose Vit C (<10,000 mg/day)

For this analysis, the data from high vs. low dose Vit C groups from Fowler 2014 and Razmkon 2011 were reported separately under each subgroup.

a. Overall mortality: High dose vitamin C supplementation (≥10,000 mg/day) was associated with a significant reduction in overall mortality (RR =0.70, 95% CI 0.52, 0.96, p=0.03, test for heterogeneity l<sup>2</sup>=0%; figure 5) whereas low dose vitamin C (<10,000 mg/day) had no effect (RR 0.92, 95% CI 0.79, 1.07, p=0.26, test for heterogeneity l<sup>2</sup>=0%; figure 5). There was a trend towards significant for the test for subgroup differences between high dose and low dose subgroups (p=0.14), with moderate heterogeneity (l<sup>2</sup>=55.1%; figure 5).

### 3. Monotherapy (Vit C alone) vs. Combination therapy (Vit C, Thiamine and Hydrocortisone)

Data from the Nathens 2002 study was not included in the combination therapy subgroup as it evaluated Vit C plus α-tocopherol.

a. Overall mortality: Vitamin C supplementation given alone (monotherapy) was associated with a significant reduction in overall mortality (RR 0.64, 95% CI 0.49, 0.83, p=0.0006, test for heterogeneity I<sup>2</sup>=0%; figure 6) while there was no effect on overall mortality in the studies of Vit C in combination with thiamine and hydrocortisone (RR 1.00, 95% CI 0.85, 1.18, p=0.99, test for heterogeneity I<sup>2</sup>=0%; figure 6). Test for subgroup differences was significant, p=0.004 but there was high level of heterogeneity (I<sup>2</sup>=87.9%; figure 6)

**Infections:** Only 3 studies reported on new infections (Nathens 2002, Chang 2020, Mohamed 2020) and there were no differences between the groups receiving vitamin C supplementation or placebo/none in either of these trials.

**Length of Stay**: All the studies reported on varying outcomes related to length of stay. Only few reported on the mean and standard deviation ICU length of stay (Zabet 2016, Mohamed 2020, Hwang 2020, Iglesias 2020 and Zhang 2021) and hospital length of stay (Mohamed 2020, Iglesias 2020, Wani 2020 and Zhang 2021). When these data were aggregated, vitamin C supplementation had no effect on ICU length of stay (WMD 0.41, 95% CI -1.32, 2.13, p=0.64, test for heterogeneity  $I^2=27\%$ ) or hospital length of stay (WMD 1.26, 95% CI -0.85, 3.37, p=0.24, test for heterogeneity  $I^2=21\%$ ) see figures 7 and 8. Razmkon et al 2011 reported a non-significantly higher hospital length of stay in the placebo group compared with the other groups (p = 0.08) but data was not shown. All other studies reported no significant differences in the length of stay outcomes between the groups.

**Duration of ventilation:** Fowler et al 2019 reported a trend towards an increase in mechanical ventilator free days in the vitamin C supplemented group vs. placebo (13.1 vs. 10.6; p=0.15). There were no significant differences in ventilator free days, duration of ventilation or ventilation and vasopressor free days between the groups in any of the other studies.

**Duration of Vasopressor Use:** The effects of vitamin C on vasopressor use were not statistically aggregated due to varying methods of reporting. Three studies reported a significant reduction in the time to alive and free of vasopressors (Iglesias 2020 p<0.001), duration of vasopressors (Wani 2020 p=0.01, Zabet 2016 p=0.007, Lv 2020 p=0.001) or mean dose of vasopressors (Zabet 2016, p=0.004) in the Vitamin C supplemented groups compared to placebo/control. Fowler (2019) reported a trend towards a reduction in vasopressor free days in the vitamin C supplemented groups. In the remaining trials, no significant differences between the groups observed or this outcome measure was not reported.

**Organ dysfunction:** Different methods of reporting the impact of vitamin C precluded the statistical aggregation of this important secondary outcome. Nevertheless, a significant reduction in SOFA scores was reported in the Vitamin C supplemented groups compared to placebo/control in four trials (Nathens 2002 p<0.04, Fowler 2014 p<0.05; Fujii 2020 p=0.02; Chang 2020 p=0.02) while four trials reported a trend towards a reduction in SOFA scores in the intervention groups (Iglesias 2020, p=0.10; Moskowitz 2020, p=0.12; Wani 2020, p=0.20; and Sevransky 2021, p=0.10:). There were no statistically significant differences in SOFA score changes in three trials (Fowler 2019, Hwang 2020, Mohamed 2020, Zhang 2021).

**Safety**: No RCT reported an increase in safety issues in the vitamin C group. Specifically, there were no reports of increased hemolysis, kidney stones or severe hypoglycemia.

# **Conclusions:**

In Critically ill patients, IV vitamin C...

- 1. may be associated with lower overall mortality but has no effect on ICU or hospital mortality. The beneficial treatment effect may be greater with the use of high-dose vitamin C used alone (not in combination with thiamine or corticosteroids).
- 2. has no effect on ICU, hospital LOS or ventilation outcomes in critically ill patients.
- 3. may facilitate faster resolution of shock or less use of vasopressor but the heterogeneous nature of the data and conflicting results preclude firm conclusions.
- 4. may have a positive impact on the resolution of SOFA scores
- 5. appears to be safe.

**Level 1 study:** if all of the following are fulfilled: concealed randomization, blinded outcome adjudication and an intention to treat analysis.

Level 2 study: If any one of the above characteristics are unfulfilled.

| Study              | Population                                                           | Methods<br>(score)                                      | Intervention                                                                                                                                                                                                                           | Mortality # (%)                                                                                                                                                                                                                                                                                                  | Infections #<br>(%)†                                                           |
|--------------------|----------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| 1) Nathens<br>2002 | General<br>surgical/trauma<br>ICU patients<br>N=595<br>Single centre | C.Random: not<br>sure<br>ITT: no<br>Blinding: no<br>(7) | IV ascorbic acid (1000 mg in 100<br>mL D5W) every 8<br>hours + α-tocopherol (1000 IU)<br>every 8 hours via naso- or<br>orogastric tube for duration of ICU<br>stay, maximum 28 days vs.<br>standard of care.                           | Intervention vs. standard of care<br>28 day<br>4/301 (1%) vs. 7/294 (2%)<br>ICU<br>3/301 (1%) vs. 9/294 (3%)<br>Hospital<br>5/301 (2%) vs. 9/294 (3%)                                                                                                                                                            | Intervention vs.<br>standard of<br>care<br>36/301 (12%)<br>vs. 44/294<br>(15%) |
| 4) Razmkon<br>2011 | Severe head<br>injury patients<br>N=100<br>Two centres               | C.Random: no<br>ITT: yes<br>Blinding: double<br>(8)     | IV low dose ascorbic acid (500<br>mg/day) for 7 days<br>vs. IV high dose ascorbic acid (10<br>gms on admission day and day 4<br>plus 4g/d X 3 remaining days)<br>vs. Vitamin E (400 IU/day)<br>intramuscularly X 7 days vs.<br>placebo | Low dose vs high dose vs. Vit E vs.<br>placebo<br>Hospital<br>7/26 (26.9%) vs 7/23 (30.4%) vs. 4/24<br>(16.7%) vs. 8/27 (29.7%), p=NR<br>60 day<br>8/26 (30.8%) vs. 7/23 (30.4%) vs. 5/24<br>(20.8%) vs. 8/27 (29.7%), p=NR<br>6 month<br>9/26 (34.6%) vs. 7/23 (30.4%) vs. 6/24 (25%)<br>vs. 8/27 (29.7%), p=NR | NR                                                                             |
| 2) Fowler<br>2014  | Septic patients<br>N=26<br>Single centre                             | C.Random: yes<br>ITT: no<br>Blinding: double<br>(7)     | IV low dose ascorbic acid (50<br>mg/kg/day) vs IV high dose<br>ascorbic acid (200 mg/kg/day) vs<br>placebo (5% dextrose in water).                                                                                                     | Low dose vs. high dose vs. placebo<br>28-day<br>3/8 (38.1%) vs. 4/8 (50.6%) vs. 5/8 (62.5)%,<br>p=NR                                                                                                                                                                                                             | NR                                                                             |

# Table 1. Randomized studies evaluating vitamin C in critically ill patients

| 3) Zabet 2016     | Surgical ICU<br>patients with<br>septic shock<br>requiring<br>vasopressors<br>N=28<br>Single centre | C.Random: yes<br>ITT: yes<br>Blinding: double<br>(12)  | <b>IV ascorbic acid</b> (25 mg/kg q6h) for<br>72h vs IV placebo (5% dextrose)                                                                                                                                                                      | Intervention vs. placebo<br>28 day<br>2/14 (14%) vs. 9/14 (64%) =0.009                                                                                                                                                                                                         | NR                                                                                         |
|-------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| 5) Fowler<br>2019 | ICU patients with<br>sepsis and ARDS<br>N=170<br>Multicentre, n=7                                   | C. Random: yes;<br>ITT: no<br>Blinding: double<br>(10) | IV ascorbic acid (50 mg/kg actual<br>body weight, every 6 hrs for 96 hrs)<br>vs. dextrose 5% in water alone (50<br>mg/kg actual body weight, every 6<br>hrs for 96 hrs)                                                                            | Intervention vs placebo<br>28-day<br>25/84 (29.8%) vs. 38/82 (46.3%); p=0.03                                                                                                                                                                                                   | NR                                                                                         |
| 6) Fujii 2020     | ICU patients with<br>shock<br>N=216<br>Multicentre, n=10                                            | C.Random: yes<br>ITT: no<br>Blinding: no<br>(8)        | IV ascorbic acid (1500 mg q6<br>hour), hydrocortisone (50mg<br>q6hrs) and thiamine (200mg q12<br>hrs) vs. IV hydrocortisone (50mg<br>q6hrs) alone with thiamine as per<br>usual care. Given until resolution of<br>shock or up to 10 days.         | Intervention vs. hydrocortisone &<br>thamine<br>ICU<br>21/107(19.6%) vs. 19/104 (18.3%)<br>p=0.80<br>Hospital<br>25/107 (23.4%) vs. 21/103 (20.4%)<br>p= 0.60<br>28 day<br>22/106 (22.6 %) vs. 21/103 (20.4%)<br>p=0.69<br>90 day<br>30/105 (28.6%) vs. 25/102 (24.5%), p=0.51 | NR                                                                                         |
| 7) Chang<br>2020  | ICU patients with<br>septic shock<br>N=80<br>Single centre                                          | C.Random: no<br>ITT: yes<br>Blinding: single<br>(10)   | IV ascorbic acid (1500 mg q6 hrs<br>for 4 days), hydrocortisone (50 mg<br>q6 hrs for 7 days, and thiamine<br>(200 mg q12hrs for 4 days) or until<br>ICU discharge for all vs. same<br>volume of normal saline for 4 days<br>or until ICU discharge | Intervention vs. placebo<br>28-day<br>11/40 (27.5%) vs. 14/40 (35%); p=0.47                                                                                                                                                                                                    | Intervention vs.<br>placebo<br>Number of new<br>infections<br>1/40 (2.5%) vs.<br>0/40 p=NS |

| 8) Hwang<br>2020         | Patients admitted<br>from Emergency<br>with septic shock.<br>N=116<br>Multicentre, n=4 | C.Random: yes<br>ITT: no<br>Blinding: double<br>(11) | IV ascorbic acid (50 mg/kg) and<br>thiamine (200 mg) infused over 60<br>minutes every 12 hrs for 48 hrs vs.<br>same volume of normal saline                                                                                                                                                            | Intervention vs. placebo<br>ICU<br>7/46 (15.2%) vs. 7/52 (13.5%), p=0.80<br>Hospital<br>13/53 (24.5%) vs.11/58 (19%); p=0.48<br>28 day<br>11/53 (20.8%) vs. 9/58 (15.5%), p=0.47<br>90 day<br>17/53 (32.1%) vs.16/58 (27.6), p=0.61 | NR                                                                                                        |
|--------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| 9) Iglesias<br>2020      | ICU patients with<br>sepsis or septic<br>shock.<br>N=140<br>Multicentre, n=2           | C.Random: yes<br>ITT: no<br>Blinding: double<br>(9)  | IV ascorbic acid (1500 mg<br>q6hrs), hydrocortisone (50 mg<br>q6hrs) & thiamine (200 mg q12hrs)<br>vs. normal saline, both started<br>within 10 hrs and given for 4 days                                                                                                                               | Intervention vs. placebo<br>ICU<br>6/68 (9%) vs. 10/69 (14%), p=0.30<br>Hospital<br>11/68 (16%) vs. 13/69 (19.4%), p=0.60                                                                                                           | NR                                                                                                        |
| 10) Lv 2020              | ICU patients with<br>sepsis<br>n=117<br>Single-center                                  | C.Random: No<br>ITT: Yes<br>Blinding: No<br>(8)      | IV 3.0 g vitamin C dissolved into 5%<br>dextrose vs 5% dextrose as placebo<br>(both given 100 ml/time, 2<br>times/day), started from ICU<br>admission until ICU discharge                                                                                                                              | Intervention vs. placebo<br>28-day<br>15/61 (24.6%) vs. 24/56 (42.9%), p=0.002                                                                                                                                                      | NR                                                                                                        |
| 11) Mohamed<br>2020      | ICU patients with<br>septic shock<br>n=90<br>Single-center                             | C.Random:<br>Yes<br>ITT: No<br>Blinding: no<br>(6)   | IV hydrocortisone (50 mg every 6<br>hours), vitamin C (AA) (1.5 g every<br>6 hours; infused over 60 minutes),<br>and thiamine (200 mg every 12<br>hours) for 4 days, with the first<br>doses of the drugs administered<br>within 6 hours of onset of septic<br>shock/ admission <b>vs</b> routine care | Intervention vs. Standard of care<br>All-cause mortality<br>26/45 (57.8%) vs 25/45 (55.6%), p=NS                                                                                                                                    | Intervention<br>vs. placebo<br>Multidrug<br>resistant<br>bacteria<br>25/45 (55.6%)<br>vs 24/43<br>(55.5%) |
| 12)<br>Moskowitz<br>2020 | ICU patients with<br>septic shock.<br>N=205,<br>Multicentre, n=14                      | C.Random: yes<br>ITT: no<br>Blinding: double<br>(10) | IV ascorbic acid (1500 mg),<br>hydrocortisone (50 mg), &<br>thiamine (100 mg) vs. normal<br>saline, both started within 24 hrs q6                                                                                                                                                                      | Intervention vs. placebo<br>ICU<br>23/101 (22.7%) vs. 20/99 (20.2%), p=0.69<br>Hospital                                                                                                                                             | NR                                                                                                        |

| 12) Mari                 | Oritically ill                                                                                                                     | C Dandami voc                                         | hrs for 4 days or until ICU discharge                                                                                                                                                                                                 | 28/101 (27.7%) vs. 23/99 (23.2%), p=0.55<br><b>30 day</b><br>35/101 (34.7%) vs. 29/99 (29.3%), p=0.26                                                                                                                                                                                           |    |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 13) Wani<br>2020         | Critically ill<br>patients with<br>sepsis and septic<br>shock<br>N=100<br>Single centre                                            | C.Random: yes<br>ITT: yes<br>Blinding: no<br>(11)     | IV ascorbic acid (1500 mg every 6<br>hrs for 4 days), hydrocortisone (50<br>mg every 6 hrs for 7 days) and<br>thiamine (200 mg every 12 hrs for<br>4 days) or until hospital discharge<br>for all vs. none. Started within 24<br>hrs. | Intervention vs. none<br>Hospital<br>12/50 (24%) vs. 14/50 (28%); p=0.82<br><b>30 day</b><br>20/50 (40%) vs. 21/50 (42%), p=1.0                                                                                                                                                                 | NR |
| 14) Zhang<br>2021        | Critically ill<br>diagnosed with<br>severe COVID-19<br>related<br>pneumonia<br>N=56<br>Multicentre, N=2                            | C.Random: yes<br>ITT: yes<br>Blinding: double<br>(12) | <b>IV Ascorbic</b> acid (12 gms q 12 hrs)<br>X 7 days <b>vs</b> . <b>sterile water</b>                                                                                                                                                | Intervention vs. placebo<br>ICU<br>6/27 (22.2%) vs, 11/29 (37.9%); p=0.20<br>Hospital<br>6/27 (22.2%) vs, 11/29 (37.9%); p=0.20<br>28 day<br>6/27 (22.2%) vs. 10/29 (34.5%), p=0.31<br>ICU mortality<br>(in subgroup SOFA ≥ 3)<br>5/27(21.7%) vs. 11/29 (52.4%), p=0.04                         | NR |
| 15)<br>Sevransky<br>2021 | Older adults with<br>acute respiratory/<br>cardiovascular<br>dysfunction<br>expected to be in<br>ICU<br>N=501<br>Multicentre, N=43 | C.Random: yes<br>ITT: yes<br>Blinding: double<br>(13) | IV ascorbic acid (1500 mg),<br>hydrocortisone (50 mg), &<br>thiamine (100 mg) vs. matching<br>placebos, q6 hrs for 4 days or until<br>ICU discharge, both                                                                             | Intervention vs. placebo<br>ICU<br>52/252 (20.6%) vs. 49/249 (19.7%)<br>difference (95%Cl) 0.9 (-8.0, 6.1), p=0.79<br><b>30 day (all cause)</b><br>56/252 (22%) vs. 60/249 (24%); p=0.16<br><b>180 day</b><br>102/252 (40.5%) vs. 94/249 (37.8%)<br>difference (95%Cl) 2.7 (-11.3, 5.8); p=0.53 | NR |
| 16) Hussein<br>2021      | Septic shock<br>N=94                                                                                                               | C.Random: No<br>ITT: No                               | hydrocortisone 50 mg/6-h IV for 7<br>days or ICU discharge followed by a                                                                                                                                                              | Intervention vs. hydrocortisone alone<br>28-day                                                                                                                                                                                                                                                 | NR |

|                                         | Single centre                                  | Blinding: No<br>( <mark>XX</mark> )                                       | taperover 3 days, vitamin C 1.5 g/6-<br>h IV for 4 days or till ICU discharge,<br>and thiamine 200 mg/12-h IV for 4<br>days or till ICU discharge<br><b>vs</b><br>hydrocortisone 50 mg/6-h IV for 7<br>days or till ICU discharge followed<br>by ataper over 3 days, | 17/47 (36.2) vs 21/47 (44.7); p=0.4005<br>ICU mortality<br>14/47 (29.7) vs 19/47 (40.4); p=0.2799                               |    |
|-----------------------------------------|------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----|
| 17) Jamali<br>Moghadam<br>Siahkali 2021 | COVID-19 with<br>ARDS<br>N=60<br>Single centre | C.Random:<br>Unsure<br>ITT: Yes<br>Blinding: No<br>( <mark>XX</mark> )    | 1.5 g vitamin C IV every 6 h for 5<br>days<br>vs<br>No Vitamin C                                                                                                                                                                                                     | Intervention vs. usual care<br>Mortality (unspecifed)<br>3/30 (10) vs 3/30 (10)                                                 |    |
| Wacker 2021                             | Septick shock<br>N=124<br>Multicentre, N=5     | C.Random:<br>Unsure<br>ITT: No<br>Blinding: Double<br>( <mark>XX</mark> ) | IV Vitamin C (10-mg/mL solution in<br>normal saline) administered<br>as a 1,000-mg bolus over 30<br>minutes followed<br>by continuous infusion of 250 mg/h<br><b>vs</b><br>placebo of<br>normal saline                                                               | Intervention vs. normal saline<br>28 day<br>16/60 (26.7) vs 26/64 (40.6); p=0.10<br>ICU<br>14/60 (23.3) vs 20/64 (31.1); p=0.32 | NR |
|                                         |                                                |                                                                           | Up to 96h or vasopressor-free for<br>24 consecutive hours, whichever<br>occurred sooner                                                                                                                                                                              |                                                                                                                                 |    |
| Rosengrave<br>2022                      | Septic shock<br>N=40<br>Single centre          | C.Random: Yes<br>ITT: Yes<br>Blinding: Yes<br>( <mark>XX</mark> )         | IV Vitamin C in 5% dextrose - 25<br>mg/kg every 6h. Administered over<br>30 min.<br>vs<br>IV 5% dextrose                                                                                                                                                             | Intervention vs. 5% dextrose<br>30-d<br>6/20 (30) vs 7/20 (35)<br>90-d<br>8/20 (40) vs 7/20 (35)<br>Hospital                    | NR |
|                                         |                                                |                                                                           | Up to 96h, or until death or ICU DC                                                                                                                                                                                                                                  | 7/20 (35) vs 7/20 (35)                                                                                                          |    |

|  | if earlier |  |
|--|------------|--|
|  |            |  |

 Table 1. Randomized studies evaluating vitamin C in critically ill patients (continued)

| Study              | LOS days                                                                                                                                                                                                                               | Ventilator free days                                                                   | Other Outcomes                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1) Nathens<br>2002 | Intervention vs. standard of care<br>ICU<br>Mean 5.3 vs. 6.4<br>Hospital<br>Mean 14.6 vs. 15.1                                                                                                                                         | Intervention vs. standard of care<br>Mean 3.7 vs. 4.6                                  | Intervention vs. standard of care<br>Vasopressors not reported<br>AEs: not reported.<br>Multiple organ failure was significantly less likely to occurred<br>in the intervention arm than control group (RR 0.43, 95% CI<br>[0.19 – 0.96],p=0.04)                                                                                                                                                    |
| 2) Razmkon<br>2011 | Hospital LOS non significantly more<br>prolonged in the placebo group compared<br>with the other groups, which experienced<br>a shorter (although not significantly)<br>hospitalization (p = .08).<br>Mean hospital LOS 15.2 ±4.3 days | NR                                                                                     | Low dose vs. high dose vs. Vit E vs. placebo<br>Glasgow Outcomes Scale (GOS): At discharge and follow-<br>up were significantly better for the vitamin E group patients (p<br>=0.04)<br>Perilesional edema: Only high-dose vitamin C stabilized or<br>reduced the diameter of perilesional hypodense region in<br>subsequent days in 68% of patients (p =0 .01).<br>AEs: No adverse events reported |
| 3) Fowler<br>2014  | Low dose vs. High dose vs. placebo<br>ICU 8.1 (1-19) vs. 9.1 (2-25) vs.11 (2-25)<br>p=NR                                                                                                                                               | Low dose vs. High dose vs. placebo<br>8.4 (0-22) vs. 4.8 (0-19) vs. 7.6 (0-23)<br>p=NR | Low dose vs. High dose vs. Placebo<br>Days on Pressors: 2.1(1-6) vs. 3.6 (2-8) vs. 3.9 (1-10);<br>p:NR<br>SOFA score change day 0 to 4: -0.020 vs0.043 vs. 0.003<br>High vs placebo p<0.01<br>High and low dose vs. non-zero slope (p<0.05)<br>AEs: No adverse events reported                                                                                                                      |
| 4) Zabet<br>2016   | Intervention vs. placebo<br>ICU, in days<br>21.45 +10.23 vs. 20.57 + 13.04, p=0.85                                                                                                                                                     | Intervention vs. placebo<br>In hrs<br>36.63 + 16.11 vs. 46.78 + 10.11, p=0.5           | Intervention vs. placebo<br>Mean dose of norepi (mcg/min) during 72h study period:<br>7.44 + 3.65 vs. 13.79+6.48, p=0.004<br>Duration or norepi administration (mean hrs, SD):<br>49.64+25.67 vs. 71.57+1.60, p=0.007<br>AEs: No adverse events reported                                                                                                                                            |
| 5) Fowler<br>2019  | Intervention vs. placebo<br>ICU 28 free days<br>10.7 vs 7.7 days: p=0.03<br>Hospital Free days<br>22.6 vs. 15.5 days: p=0.04                                                                                                           | <b>Intervention vs. placebo</b><br>13.1 vs. 10.6 days: p= 0.15                         | Intervention vs placebo<br>mSOFA score from baseline to 96 hrs decreased from 9.8<br>to 6.8 in the vitamin C group (3 points) from 10.3 to 6.8 in the<br>placebo group (3.5 points) difference, -0.10; 95% CI, -1.23<br>to 1.03; p = 0.86                                                                                                                                                           |

| 6) Fujii 2020    | Intervention vs. Control<br>28-day ICU-free days<br>21.9 (0-25.8) vs. 22.1 (3.9-25.8); p=0.66<br>Hospital<br>12.3 (6.2-26) vs.12.3 (6.2-26.1), p= 0.75 | Intervention vs. Control<br>28-day cumulative mechanical<br>ventilation free days<br>25.3 (5.2 -28) vs. 24.8 (9.5-28), p=0.73 | Vasopressor use at 168 hrs (%): 72% (median 22.2%) vs.<br>59% (median 10%); p=0.07. No differences at 48 or 96 hrs<br>AEs: No adverse events were reported<br>Intervention vs. control<br>SOFA score change at day 3, (median (IQR): -2 (-4 to 0)<br>vs1 (-3 to 0), p = 0.02<br>Acute Kidney Injury: no differences in the number of stage<br>1, 2 or 3 of AKI, p= 0.80<br>28-day RRT free-days, median (IQR): no differences, p<br>=0.71<br>Time alive and vasopressor free, median (IQR): no<br>differences, p=0.83<br>Duration of vasopressor (hours)<br>Vitamins group<br>46.4 (43.3) [No. required vasopressors and survived<br>the index shock = 90] vs.<br>Control group<br>48.0 (41.4) [No. required vasopressors and survived<br>the index shock = 90]<br>AEs<br>2 patients (2events, fluid overload and hyperglycemia)<br>in the intervention group and 1 patient (1 event,<br>gastrointestinal bleeding) in the control group. No<br>serious adverse events or suspected unexpected<br>serious adverse reactions were reported |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7) Chang<br>2020 | Intervention vs. placebo<br>ICU, in days<br>7.5 (4-12.8) vs. 7.5 (4-11.8), p=0.98                                                                      | Intervention vs. placebo<br>Mechanical Ventilation, hrs<br>126.5 (63.5-239.3) vs. 94.5 (39.8-211),<br>p=0.36                  | Intervention vs. placebo<br>SOFA score change at 72 hrs (mean, SD) was higher in the<br>intervention group $(3.5 \pm 3.3)$ vs. placebo $(1.8 \pm 3.0)$ ; p=0.02.<br>Vasopressor duration was no different in the intervention<br>group (median hrs and IQR 46; 23.8-102.5) vs. placebo<br>(58.5; 28-104), p=0.70<br>AEs:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                  |                                                                                                                                                        |                                                                                                                               | Hypernatremia (>160 mmol/L) was significantly higher in in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

|                        |                                                                                                                                                                              |                                                                                                                                                    | the intervention group vs, placebo (13 vs 3 patients, p=0.005). Also, the proportion of patients with GI bleeding (3 vs 2) and new infections (2 vs 0) were similar in the intervention and control group.                                                                                                   |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8) Hwang<br>2020       | Intervention vs. placebo<br>ICU<br>6.4 ± 5.6 (46) vs. 7.8 ± 7 (52); p=NR<br>ICU-free days<br>9 (3-11) vs. 9 (0-11); p=0.42<br>Hospital<br>14 (11-21) vs. 13.5 (9-26), p=0.92 | Intervention vs. placebo<br>Mechanical ventilation, days<br>3.6 ± 7.2 (23) vs. 3.3 ± 6.2 (24); p<br>=NR                                            | Intervention vs. placebo<br>SOFA score change at 3 days, median (IQR): 3 (-1 to 5) vs.<br>3 (0 to 4); p=0.96<br>Time to alive and free of vasopressors (shock reversal),<br>mean hrs (SD): 44 (83) vs. 49 (84.5), p=0.83<br>Vasopressor free days, median IQR: 11 (5-12) vs. 11 (10-<br>12); p=0.16<br>AEs   |
|                        |                                                                                                                                                                              |                                                                                                                                                    | No adverse events were reported in the treatment group<br>(eTable 4 in Supplements). Two patients (3.5%) in the<br>placebo group reported mild adverse events, including<br>gastrointestinal symptoms.                                                                                                       |
| 9) Iglesias<br>2020    | Intervention vs. placebo<br>ICU<br>4.76 ± 4.3 vs. 4.66 ±3.45, p=0.88<br>Hospital<br>11.5±6.8 vs. 11±6.2, p=0.75                                                              | Intervention vs. placebo<br>Mechanical ventilation, days<br>4.8 ± 4.9 vs. 5.65 ±4.3, p=0.27<br>Ventilator free days<br>22±6.2 vs. 22.4±4.3, p=0.63 | Intervention vs. placebo<br>SOFA score change at 3 days, mean (SD): $2.9\pm3.3$ vs.<br>$1.93\pm3.5$ , p=0.10<br>Time to alive and free of vasopressors: mean hrs (SD):<br>$27\pm22$ vs. $53\pm38$ , p<0.001<br>Acute Kidney injury, n (%): 54 (79%) vs. 52 (75%)<br>AEs: none reported                       |
| 10<br>Lv 2020          | Intervention vs. placebo<br>ICU, days<br>4.1 (3.2-8.3) vs 3.9 (3.1-7.5), p=0.811                                                                                             | NR                                                                                                                                                 | Intervention vs. placebo<br>SOFA score after 72h, median (IQR): 4.2 (1.2-6.6) vs 2.1<br>(1.1-4.3), p=0.001<br>Time on vasoactive drugs, hrs: 25.6 (18.8-40.6) vs 43.8<br>(24.7-66.8), p=0.001<br>Procalcitonin clearance after 72h, %: 79.6 (66.5-85.6) vs<br>61.3 (50.9-66.2), p=0.001<br>AEs: not reported |
| 11)<br>Mohamed<br>2020 | Intervention vs. standard of care<br>ICU, days<br>12.44±14.2 vs 8.44±8.16, p=0.1                                                                                             | NR                                                                                                                                                 | Intervention vs. standard of care (n=45 vs 43)<br>Mean vasoactive inotropic score: 7.77±12.12 vs<br>8.86±12.5, p=0.6<br>Time to reversal of septic shock, h: 34.58±22.63 vs                                                                                                                                  |

|                          | Hosp, days<br>31.58±31.06 vs 20.9±15.01, p=0.043                                                                                             |                                                                                                                                                                                                         | 45.42±24.4, p=0.03<br>Change in SOFA score at 72h: 2.23±2.4 vs 1.38±3.1,<br>p=0.22<br>SOFA at 72h: 8.9±3.6 vs 9.3±3.8, p=0.7<br>AEs: No adverse events were recorded                                                                                                                                                                                                                                                                                                                               |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12)<br>Moskowitz<br>2020 | Intervention vs. placebo<br>ICU free days<br>22 (3-25) vs. 21 (4-25), p=0.69                                                                 | Intervention vs. placebo<br>Ventilator free days<br>6 (2-7) vs. 6 (0-7), p>0.99                                                                                                                         | Intervention vs. placebo<br>SOFA score change at 3 days, mean (SD):<br>4.4±4.1 vs. 5.1±44.3, p=0.12<br>AEs: no unexpected serious AEs were reported. There were<br>12 (11.9%) and 7 (7.1%) patients in the intervention and<br>control arm with hyperglycemia. Eleven and 7 patients in the<br>intervention arm and control arm had hypernatremia,<br>accordingly. Also, 13 patients in the intervention arm vs 12<br>in the control had new nosocomial infections.                                |
| 13) Wani<br>2020         | Intervention vs. none<br>Hospital, in days<br>11.82 ± 7.36 vs. 10.7± 6.39, p=0.41                                                            | Intervention vs. none<br>Ventilator free days<br>3.66 ±2.05 vs. 3.33± 2.62, p=NR                                                                                                                        | Intervention vs. none<br>SOFA Day 4 score: $5.64\pm3.55$ vs. $6.62\pm3.94$ , p=0.20<br>Duration of vasopressor, hrs: $75.72\pm30.29$ vs. $96.13\pm40.5$ , p=0.01<br>AEs: none reported                                                                                                                                                                                                                                                                                                             |
| 14) Zhang<br>2021        | Intervention vs. placebo<br>ICU, in days<br>22.9 ± 14.8 vs. 17.8 ± 13.3; p=0.20<br>Hospital, in days<br>35.0 ± 17.0 vs. 32.8 ± 17.0, p =0.65 | Intervention vs. placebo<br>Ventilator free days at day 28<br>26.0 [9.0–28.0] vs. 22.0 [8.5–28.0];<br>p=0.57<br>Mechanical ventilation days to day 28<br>1.5 [0.0-19.0] vs. 6.0 [0.0–16.0]; p =<br>0.60 | Intervention vs. placebo<br>Median SOFA Score change Day 1-7: 0 [-2.75 to 1] vs. 0 [-<br>1 to -3.5]; p=0.25<br>Septic shock (n, %): 9 (34.6) vs.8(28.6); p=0.77<br>Acute kidney injury (n, %): 3(12.0) vs. 6(22.2); p=0.50<br>Acute cardiac injury (n, %): 7(26.9) vs. 13(48.1); p=0.16<br>Acute liver injury (n, %): 12(48.0) vs. 13(48.1), p=1.00<br>Coagulation disorders (n, %): 9(34.6) vs. 7(25.9); p=0.56<br>AEs: Slight increase in bilirubin from day 1 to day 7 in the<br>control group. |
| 15)<br>Sevransky<br>2021 | Intervention vs. placebo<br>ICU, days<br>4 (2-8) vs. 4 (2-8)<br>difference (95% CI) 0.0 (-2.0,1.0);<br>p=0.82                                | Intervention vs. placebo<br>Ventilator and Vasopressor free days<br>25 (0-29) vs. 26 (0-28) difference (95%<br>CI) -1 day (-4 to 2); p =0 .85                                                           | Intervention vs. placebo<br>SOFA score change to Day 4, median, IQR<br>5 (3-7) vs. 5 (2-7); difference (95% CI) 0.0 (-1.0, 0.0); p=0.10<br>Coma-/delirium-free days, median, IQR                                                                                                                                                                                                                                                                                                                   |

|                              | Hospital, in days<br>10 (6-17) vs. 9 (5-17)<br>difference (95% Cl) 1.0 (-3.0, 2.0);<br>p=0 .66                                               |                                                                                  | 4 (2-5) vs. 4 (2-5); difference (95% CI) 0.0 (0.0 to 1.0); p=<br>0.45<br><b>Kidney replacement therapy–free days, median, IQR</b><br>30 (0-30) vs. 30 (0-30); difference (95% CI) 0.0 (0.0 to 0.0);<br>p=0.58<br><b>AEs:</b> There were 2 adverse events (hemorrhagic shock and<br>worsening kidney function) in the intervention group<br>assessed as potentially related to study participation. There<br>were no reported serious adverse events in the study. |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 16) Hussein                  | Intervention vs. hydrocortisone alone                                                                                                        | Intervention vs. hydrocortisone alone                                            | Intervention vs. hydrocortisone alone                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2021                         | ICU LOS<br>8.319±4.071 (47) vs 9.787±4.206 (47);<br>p=0.0889<br>Hosp LOS<br>9.447±4.226 (47) vs 11.17±5.036 (47);<br>p=0.0756                | Mechanical ventilation days<br>5.393±3.521 (28) vs 5.379±3.755 (29);<br>p=0.9888 | Duration on vasopressor: 4 (3-7) vs 5 (4-8); p=0.100<br>SOFA score at 48h: 7.319±3.496 (47) vs 7.830±3.102 (47);<br>p=0.4558<br>SOFA score at 96h: 4.725±3.486 (40) vs 5.698±3.726 (43);<br>p=0.2239<br>ICU readmission: 2/47 (4.3) vs 8/47 (17.0); p=0.0447                                                                                                                                                                                                      |
| 17) Jamali                   | Intervention vs. usual care                                                                                                                  | Intervention vs. usual care                                                      | Intervention vs. usual care                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Moghadam<br>Siahkali<br>2021 | ICU LOS<br>5.5 (5-10) vs 5 (5-7); p=0.381<br>(Note: unsure how many were admited to<br>ICU)<br>Hosp LOS<br>8.5 (7-12) vs 6.5 (4-12); p=0.028 | <b>NR</b><br>(only 5/30 vs 4/30 were intubated)                                  | AEs: none in borh groups                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Wacker                       | Intervention vs. normal saline                                                                                                               | Intervention vs. normal saline                                                   | Intervention vs. normal saline                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2021                         | ICU LOS<br>2.9 (1.8-7.5) (60) vs 2.6 (1.5-5.3) (64);<br>p=0.47<br>Hosp LOS<br>8.9 (4.0-20.0) (60) vs 6.3 (3.8-12.5) (64);<br>p=0.15          | Duration of MV<br>0 (0-60) (60) vs 5 (0-48) (64); p=0.45                         | Improvement in SOFA: 3.5 (1-6) (n=58) vs 4 (1-6) (n=61);<br>p=0.68<br>Incidence of RRT during 96-h study period: 10/60 (16.7)<br>vs 2/60 (3.3); p=0.02<br>AEs: 15 vs 12<br>3 possible related to study drug: nausea (vitamin C),<br>bradycardia (placebo), loose stools (placebo)                                                                                                                                                                                 |

| Intervention vs. 5% dextrose | Intervention vs. 5% dextrose                                                                                                                                                                                                                                       |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NR                           | Mean dose of vaopressor: $0.99\pm0.55$ vs $0.71\pm0.60$<br>units/min; p=0.35<br>Mean duration of vasopressor: 48 (95% Cl 35-62) vs 54<br>(95% Cl 41-62); p=0.54<br>96h SOFA: $6.7\pm8.3$ vs $5.5\pm7.0$ ; p=0.64<br>AEs: 1 gastrointestinal bleed in placebo group |
|                              |                                                                                                                                                                                                                                                                    |

† refers to the # of patients with infections unless specified LOS: Length of stay ICU: intensive care unit C. Random: concealed randomization

ITT: intent to treat; NR: not reported; NS: not significant; hrs: hours; RR: Risk Ratio; WMD: weighted mean difference;

|                         | Vitami     | n C                 | Control (placebo o    | r none)                 |        | Risk Ratio          |      | Risk Ratio                        |
|-------------------------|------------|---------------------|-----------------------|-------------------------|--------|---------------------|------|-----------------------------------|
| Study or Subgroup       | Events     | Total               | Events                | Total                   | Weight | M-H, Random, 95% CI | Year | M-H, Random, 95% CI               |
| Nathens 2002            | 4          | 301                 | 7                     | 294                     | 1.4%   | 0.56 [0.17, 1.89]   | 2002 |                                   |
| Razmkon 2011            | 14         | 49                  | 8                     | 27                      | 3.7%   | 0.96 [0.46, 2.00]   | 2011 |                                   |
| Fowler 2014             | 7          | 16                  | 5                     | 8                       | 3.4%   | 0.70 [0.32, 1.52]   | 2014 |                                   |
| Zabet 2016              | 2          | 14                  | 9                     | 14                      | 1.1%   | 0.22 [0.06, 0.85]   | 2016 |                                   |
| Fowler 2019             | 25         | 64                  | 38                    | 82                      | 11.5%  | 0.64 [0.43, 0.96]   | 2019 |                                   |
| Chang 2020              | 11         | 40                  | 14                    | 40                      | 4.6%   | 0.79 [0.41, 1.52]   | 2020 |                                   |
| Fujii 2020              | 22         | 106                 | 21                    | 103                     | 6.8%   | 1.02 [0.60, 1.73]   | 2020 |                                   |
| Hwang 2020              | 11         | 53                  | 9                     | 58                      | 3.1%   | 1.34 [0.60, 2.97]   | 2020 | <b>-</b>                          |
| Moskowitz 2020          | 35         | 101                 | 29                    | 99                      | 11.3%  | 1.18 [0.79, 1.78]   | 2020 | - <b>-</b>                        |
| Lv 2020                 | 15         | 61                  | 24                    | 56                      | 6.8%   | 0.57 [0.34, 0.98]   | 2020 |                                   |
| Mohamed 2020            | 26         | 45                  | 25                    | 45                      | 13.9%  | 1.04 [0.72, 1.49]   | 2020 |                                   |
| Wani 2020               | 20         | 50                  | 21                    | 50                      | 8.6%   | 0.95 [0.59, 1.52]   | 2020 |                                   |
| iglesias 2020           | 11         | 68                  | 13                    | 69                      | 3.7%   | 0.86 [0.41, 1.78]   | 2020 | <b>_</b>                          |
| Sevransky 2021          | 56         | 252                 | 60                    | 249                     | 17.3%  | 0.92 [0.67, 1.27]   | 2021 |                                   |
| Zhang 2021              | 6          | 27                  | 10                    | 29                      | 2.7%   | 0.64 [0.27, 1.53]   | 2021 |                                   |
| Total (95% CI)          |            | 1267                |                       | 1223                    | 100.0% | 0.87 [0.75, 1.00]   |      | •                                 |
| Total events            | 265        |                     | 293                   |                         |        |                     |      |                                   |
| Heterogeneity: Tau2 -   | = 0.00; Cł | 1 <sup>2</sup> = 14 | 1.83, df = 14 (P = 0. | 39); i <sup>2</sup> = ( | 6%     |                     |      | 0.01 0.1 1 10 10                  |
| Test for overall effect | : Z = 1.90 | ) (P = 0            | .06)                  |                         |        |                     |      | Favours Vitamin C Favours Control |

Figure 1. Overall Mortality (Fowler 2014 data and Razmkon 2011 data from both high and low dose groups combined)

| Figure | 2. | ICU | Morta | litv |
|--------|----|-----|-------|------|
|        |    |     |       |      |

|                         | Vitami   | n C                 | Control (placebo or r  | 10ne)               |        | <b>Risk Ratio</b>   |      | Risk Ratio                                             |
|-------------------------|----------|---------------------|------------------------|---------------------|--------|---------------------|------|--------------------------------------------------------|
| Study or Subgroup       | Events   | Total               | Events                 | Total               | Weight | M-H, Random, 95% CI | Year | M-H, Random, 95% CI                                    |
| Nathens 2002            | 3        | 301                 | 9                      | 294                 | 3.1×   | 0.33 [0.09, 1.19]   | 2002 |                                                        |
| iglesias 2020           | 6        | 68                  | 10                     | 69                  | 5.7%   | 0.61 [0.23, 1.58]   | 2020 |                                                        |
| Moskowitz 2020          | 23       | 101                 | 20                     | 99                  | 18.5%  | 1.13 [0.66, 1.92]   | 2020 |                                                        |
| Fujii 2020              | 21       | 107                 | 19                     | 104                 | 16.7%  | 1.07 [0.61, 1.88]   | 2020 | _ <b>_</b> _                                           |
| Hwang 2020              | 7        | 46                  | 7                      | 52                  | 5.6%   | 1.13 [0.43, 2.98]   | 2020 |                                                        |
| Sevransky 2021          | 52       | 252                 | 49                     | 249                 | 43.0%  | 1.05 [0.74, 1.49]   | 2021 | -                                                      |
| Zhang 2021              | 6        | 27                  | 11                     | 29                  | 7.3%   | 0.59 [0.25, 1.36]   | 2021 |                                                        |
| Total (95% CI)          |          | 902                 |                        | 896                 | 100.0% | 0.96 [0.76, 1.21]   |      | •                                                      |
| Total events            | 118      |                     | 125                    |                     |        |                     |      |                                                        |
| Heterogeneity: Tau2 =   | 0.00; Cl | n <sup>2</sup> = 5. | 74, df = 6 (P = 0.45); | r <sup>2</sup> = 0% |        |                     |      | 0.01 0.1 1 10 100                                      |
| Test for overall effect | Z = 0.35 | (P = (              | ).72)                  |                     |        |                     |      | 0.01 0.1 1 10 100<br>Favours Vitamin C Favours control |

Figure 3. Hospital Mortality (Razmkon 2011 data from both high and low dose groups combined)

|                                   | Vitami     | in C       | Control (placebo o   | r none)                 |        | Risk Ratio          |      | Risk Ratio                                              |
|-----------------------------------|------------|------------|----------------------|-------------------------|--------|---------------------|------|---------------------------------------------------------|
| Study or Subgroup                 | Events     | Total      | Events               | Total                   | Weight | M-H, Random, 95% CI | Year | M-H, Random, 95% Cl                                     |
| Nathens 2002                      | 5          | 301        | 9                    | 294                     | 4.6%   | 0.54 [0.18, 1.60]   | 2002 |                                                         |
| Razmkon 2011                      | 14         | 49         | 8                    | 27                      | 10.2%  | 0.96 [0.46, 2.00]   | 2011 |                                                         |
| Fujii 2020                        | 25         | 107        | 21                   | 103                     | 20.6X  | 1.15 [0.69, 1.91]   | 2020 | <b>e</b>                                                |
| Hwang 2020                        | 13         | 53         | 11                   | 58                      | 10.7%  | 1.29 [0.63, 2.63]   | 2020 | _ <b>_</b>                                              |
| glestas 2020                      | 11         | 68         | 13                   | 69                      | 10.2%  | 0.86 [0.41, 1.78]   | 2020 | <b>_</b>                                                |
| Moskowitz 2020                    | 28         | 101        | 23                   | 99                      | 23.8%  | 1.19 [0.74, 1.92]   | 2020 | - <b>-</b>                                              |
| Wani 2020                         | 12         | 50         | 14                   | 50                      | 12.3%  | 0.86 [0.44, 1.66]   | 2020 | <b>-</b> _                                              |
| Zhang 2021                        | 6          | 27         | 11                   | 29                      | 7.6%   | 0.59 [0.25, 1.36]   | 2021 |                                                         |
| Total (95% CI)                    |            | 756        |                      | 729                     | 100.0% | 0.99 [0.78, 1.25]   |      |                                                         |
| Total events                      | 114        |            | 110                  |                         |        |                     |      |                                                         |
| Heterogeneity: Tau <sup>2</sup> = | = 0.00; Ch | $h^2 = 4.$ | 45, df = 7 (P = 0.73 | l); i <sup>2</sup> = 0% |        |                     |      |                                                         |
| Test for overall effect:          |            |            |                      |                         |        |                     |      | 0.01 0.1 1 10 100'<br>Favours Vitamin C Favours control |

|                                   | Vitami   | in C     | Control (placebo o    | r none)                 |        | Risk Ratio          | Risk Ratio                                            |
|-----------------------------------|----------|----------|-----------------------|-------------------------|--------|---------------------|-------------------------------------------------------|
| Study or Subgroup                 | Events   | Total    | Events                | Total                   | Weight | M-H, Random, 95% CI | M-H, Random, 95% Cl                                   |
| 1.9.1 Sepsis trials               |          |          | 01000000              |                         |        |                     |                                                       |
| Chang 2020                        | 11       | 40       | 14                    | 40                      | 4.6N   | 0.79 [0.41, 1.52]   |                                                       |
| iowler 2014                       | 7        | 16       | 5                     | 8                       | 3.4%   | 0.70 [0.32, 1.52]   |                                                       |
| fowler 2019                       | 25       | 84       | 38                    | 82                      | 11.5%  | 0.64 [0.43, 0.96]   |                                                       |
| uji 2020                          | 22       | 106      | 21                    | 103                     | 6.8%   | 1.02 [0.60, 1.73]   |                                                       |
| lwang 2020                        | 11       | 53       | 9                     | 58                      | 3.1%   | 1.34 [0.60, 2.97]   |                                                       |
| glesias 2020                      | 11       | 68       | 13                    | 69                      | 3.7%   | 0.86 [0.41, 1.78]   |                                                       |
| y 2020                            | 15       | 61       | 24                    | 56                      | 6.8N   | 0.57 [0.34, 0.98]   |                                                       |
| Mohamed 2020                      | 26       | 45       | 25                    | 45                      | 13.9%  | 1.04 [0.72, 1.49]   | +                                                     |
| Hoskowitz 2020                    | 35       | 101      | 29                    | 99                      | 11.3%  | 1.18 (0.79, 1.78)   |                                                       |
| Sevransky 2021                    | 56       | 252      | 60                    | 249                     | 17.3%  | 0.92 [0.67, 1.27]   |                                                       |
| Wani 2020                         | 20       | 50       | 21                    | 50                      | 8.6N   | 0.95 [0.59, 1.52]   |                                                       |
| Zabet 2016                        | 2        | 14       | 9                     | 14                      | 1.18   | 0.22 [0.06, 0.85]   |                                                       |
| Subtotal (95% CI)                 |          | 890      |                       | 873                     | 92.2%  | 0.87 [0.74, 1.03]   | •                                                     |
| lotal events                      | 241      |          | 268                   |                         |        |                     |                                                       |
| Heterogenety: Tau <sup>2</sup> -  | 0.02; C  | r = 13   | 3.73, df = 11 (P = 0. | 25); + =                | 20%    |                     |                                                       |
| Test for overall effect           | Z = 1.55 | ) (P = ( | ).11)                 |                         |        |                     |                                                       |
| L9.2 Non Sepsis tria              | lls      |          |                       |                         |        |                     |                                                       |
| athens 2002                       | 4        | 301      | 7                     | 294                     | 1.4%   | 0.56 [0.17, 1.89]   | 10                                                    |
| Razmikon 2011                     | 14       | 49       | 8                     | 27                      | 3.7%   | 0.96 [0.46, 2.00]   |                                                       |
| Zhang 2021                        | 6        | 27       | 10                    | 29                      | 2.7%   | 0.64 [0.27, 1.53]   |                                                       |
| Subtotal (95% CI)                 |          | 377      |                       | 350                     | 7.8%   | 0.76 [0.46, 1.27]   | •                                                     |
| lotal events                      | 24       |          | 25                    |                         |        |                     |                                                       |
| leterogeneity: Tau <sup>4</sup> - | 0.00; C  | " = 0.   | 80, df = 2 (P = 0.67  | ); F = 0%               |        |                     |                                                       |
| Test for overall effect           | Z = 1.04 | (?=(     | 0.30}                 |                         |        |                     |                                                       |
| Total (95% CI)                    |          | 1267     |                       | 1223                    | 100.0% | 0.87 [0.75, 1.00]   | •                                                     |
| iotal events                      | 265      |          | 293                   |                         |        |                     |                                                       |
|                                   |          | 1-14     | 4.83, df = 14 (P = 0. | 39); 1 <sup>2</sup> = 1 | 6%     |                     | has als do sa                                         |
| est for overall effect            |          |          |                       |                         |        |                     | 0.01 0.1 1 10 10<br>Favours Vitamin C Favours Control |
|                                   |          |          | 0.25, df = 1 (P = 0.6 | 621 F - 0               | N      |                     | revours vitamin c. ravours control                    |

Figure 4. Overall Mortality: Sepsis. vs. non sepsis

|                                                            | Vitam  |         | Control (placebo d |                                 |        | <b>Risk Ratio</b>   | Risk Ratio                        |
|------------------------------------------------------------|--------|---------|--------------------|---------------------------------|--------|---------------------|-----------------------------------|
| Study or Subgroup                                          | Events | Total   | Events             | Total                           | Weight | M-H, Random, 95% CI | M-H, Random, 95% CI               |
| 1.10.1 High Dose Vi                                        | t C    |         |                    |                                 |        |                     |                                   |
| Fowler 2014                                                | 4      | 6       | 5                  | 6                               | 2.4%   | 0.80 [0.33, 1.92]   |                                   |
| Fowler 2019                                                | 25     | 84      | 38                 | 82                              | 11.3%  | 0.64 [0.43, 0.96]   |                                   |
| Razmkon 2011                                               | 7      | 23      | 6                  | 27                              | 2.5%   | 1.03 [0.44, 2.40]   |                                   |
| Zhang 2021                                                 | 6      | 27      | 10                 | 29                              | 2.4%   |                     |                                   |
| Subtotal (95% CI)                                          |        | 142     |                    | 146                             | 18.7%  | 0.70 [0.52, 0.96]   | ◆                                 |
| Total events                                               | 42     |         | 61                 |                                 |        |                     |                                   |
| Heterogeneity: Tau <sup>2</sup><br>Test for overall effect |        |         |                    | 8);                             |        |                     |                                   |
| 1.10.2 Low Dose Vit                                        |        |         |                    |                                 |        |                     |                                   |
| Chang 2020                                                 | 11     |         | 14                 | 40                              | 4.3%   |                     |                                   |
| Fowler 2014                                                | 3      | 6       | 5                  | 6                               | 1.7%   |                     |                                   |
| Fujii 2020                                                 | 22     |         | 21                 | 103                             | 6.5%   |                     |                                   |
| Hwang 2020                                                 | 11     | 53      | 9                  | 58                              | 2.9%   |                     |                                   |
| iglesias 2020                                              | 11     | 68      | 13                 | 69                              | 3.4%   |                     |                                   |
| Lv 2020                                                    | 15     | 61      | 24                 | 56                              | 6.4%   |                     |                                   |
| Mohamed 2020                                               | 26     | 45      | 25                 | 45                              | 14.0%  |                     | +                                 |
| Moskowitz 2020                                             | 35     |         | 29                 | 99                              | 11.1%  |                     |                                   |
| Nathens 2002                                               | 4      | 301     | 7                  | 294                             | 1.2%   | 0.56 [0.17, 1.89]   |                                   |
| Razmkon 2011                                               | 7      | 26      | 6                  | 27                              | 2.5%   |                     |                                   |
| Sevransky 2021                                             | 56     | 252     | 60                 | 249                             | 18.0%  |                     | -                                 |
| Wani 2020                                                  | 20     | 50      | 21                 | 50                              | 8.3×   |                     |                                   |
| Zabet 2016                                                 | 2      | 14      | 9                  | 14                              | 1.0%   |                     | <del></del>                       |
| Subtotal (95% CI)                                          |        | 1125    |                    | 1112                            | 81.3%  | 0.92 [0.79, 1.07]   | •                                 |
| Total events                                               | 223    |         | 245                |                                 |        |                     |                                   |
| Heterogeneity: Tau <sup>2</sup><br>Test for overall effect |        |         |                    | .46); i <sup>2</sup> = (        | 0%     |                     |                                   |
| Total (95% CI)                                             |        | 1267    |                    | 1258                            | 100.0% | 0.87 [0.76, 1.00]   | •                                 |
| Total events                                               | 265    |         | 306                |                                 |        |                     | 27                                |
| Heterogeneity: Tau2                                        |        | hť = 15 |                    | .52); <b>i</b> <sup>2</sup> = 1 | 0X     |                     |                                   |
| Test for overall effect                                    |        |         |                    |                                 |        |                     | 0.01 0.1 1 10 1                   |
| Test for subgroup di                                       |        |         |                    | 14) P = 5                       | 5 1%   |                     | Favours Vitamin C Favours Control |

Figure 5. Overall Mortality: High dose Vitamin C (≥ 10,000 mg/day) vs. Low dose (<10,000 mg/day)

|                                   | Vitami   | n C                 | Control (placebo or    | none)                |        | <b>Risk Ratio</b>   | Risk Ratio                                             |
|-----------------------------------|----------|---------------------|------------------------|----------------------|--------|---------------------|--------------------------------------------------------|
| Study or Subgroup                 | Events   | Total               | Events                 | Total                | Weight | M-H, Random, 95% CI | M-H, Random, 95% Cl                                    |
| 1.11.1 Monotherapy                |          |                     |                        |                      |        |                     |                                                        |
| Fowler 2014                       | 7        | 16                  | 5                      | 8                    | 3.5X   | 0.70 [0.32, 1.52]   |                                                        |
| Fowler 2019                       | 25       | 84                  | 38                     | 82                   | 11.6%  | 0.64 [0.43, 0.96]   |                                                        |
| Lv 2020                           | 15       | 61                  | 24                     | 56                   | 7.0%   | 0.57 [0.34, 0.98]   |                                                        |
| Razmkon 2011                      | 14       | 49                  | 6                      | 27                   | 3.9%   | 0.96 [0.46, 2.00]   |                                                        |
| Zabet 2016                        | 2        | 14                  | 9                      | 14                   | 1.2%   | 0.22 [0.06, 0.85]   |                                                        |
| Zhang 2021                        | 6        | 27                  | 10                     | 29                   | 2.8%   | 0.64 [0.27, 1.53]   |                                                        |
| Subtotal (95% CI)                 |          | 251                 |                        | 216                  | 30.0%  | 0.64 [0.49, 0.83]   | •                                                      |
| Total events                      | 69       |                     | 94                     |                      |        |                     |                                                        |
| Heterogeneity: Tau <sup>2</sup> = | 0.00; Ch | 1 <sup>2</sup> = 3. | 84, df = 5 (P = 0.57); | r <sup>2</sup> = 0%  |        |                     |                                                        |
| Test for overall effect:          | Z = 3.41 | (P = 0              | .0006)                 |                      |        |                     |                                                        |
| 1.11.2 Combined                   |          |                     |                        |                      |        |                     |                                                        |
| Chang 2020                        | 11       | 40                  | 14                     | 40                   | 4.8%   | 0.79 [0.41, 1.52]   |                                                        |
| Fujii 2020                        | 22       | 106                 | 21                     | 103                  | 7.0%   | 1.02 [0.60, 1.73]   |                                                        |
| Hwang 2020                        | 11       | 53                  | 9                      | 58                   | 3.3%   | 1.34 [0.60, 2.97]   |                                                        |
| iglesias 2020                     | 11       | 68                  | 13                     | 69                   | 3.9%   | 0.86 [0.41, 1.78]   |                                                        |
| Mohamed 2020                      | 26       | 45                  | 25                     | 45                   | 13.9%  | 1.04 [0.72, 1.49]   | -                                                      |
| Moskowitz 2020                    | 35       | 101                 | 29                     | 99                   | 11.4%  | 1.18 [0.79, 1.78]   |                                                        |
| Sevransky 2021                    | 56       | 252                 | 60                     | 249                  | 16.9%  | 0.92 [0.67, 1.27]   | -                                                      |
| Wani 2020                         | 20       | 50                  | 21                     | 50                   | 8.8%   | 0.95 [0.59, 1.52]   |                                                        |
| Subtotal (95% CI)                 |          | 715                 |                        | 713                  | 70.0%  | 1.00 [0.85, 1.18]   | <b>♦</b>                                               |
| Total events                      | 192      |                     | 192                    |                      |        |                     |                                                        |
| Heterogeneity: Tau <sup>2</sup> = | 0.00; Ch | $t^2 = 2.$          | 19, df = 7 (P = 0.95); | $f^{2} = 0%$         |        |                     |                                                        |
| Test for overall effect:          | Z = 0.01 | (P = 0              | 1.99}                  |                      |        |                     |                                                        |
| Total (95% CI)                    |          | 966                 |                        | 929                  | 100.0% | 0.87 [0.75, 1.01]   | •                                                      |
| Total events                      | 261      |                     | 286                    |                      |        |                     |                                                        |
| Heterogeneity: Tau <sup>2</sup> = | 0.01; CH | $1^2 = 14$          | .29, df = 13 (P = 0.3  | 5);                  | 9%     |                     | 0.01 0.1 1 10 100                                      |
| Test for overall effect:          |          |                     |                        |                      |        |                     | 0.01 0.1 1 10 100<br>Favours Vitamin C Favours Control |
| Test for subgroup diffe           | erences: | $Cht^2 =$           | 8.26, df = 1 (P = 0.00 | 4), 1 <sup>2</sup> = | 87.9%  |                     | ravours vitamin C ravours control                      |

Figure 6. Overall mortality: Monotherapy (Vit C alone) vs. Combination therapy (Vit C, Thiamine and Hydrocortisone)

Figure 7. ICU Length of Stay, days

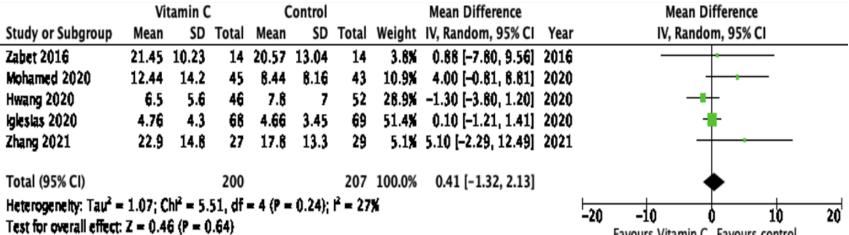
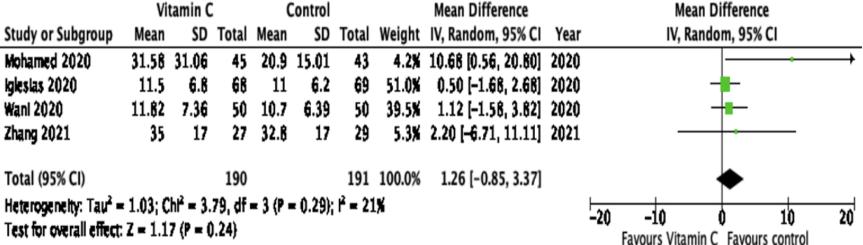






Figure 8. Hospital Length of Stay, days



23

### References

# **Included Studies**

- 1. Nathens AB, Neff MJ, Jurkovich GJ, et al. Randomized, prospective trial of antioxidant supplementation in critically ill surgical patients. Ann Surg. 2002;236(6):814-822. doi:10.1097/00000658-200212000-00014
- 2. Razmkon A, Sadidi A, Sherafat-Kazemzadeh E, et al. Administration of vitamin C and vitamin E in severe head injury: a randomized double-blind controlled trial. Clin Neurosurg. 2011;58:133-137. doi:10.1227/neu.0b013e3182279a8f
- 3. Fowler AA 3rd, Syed AA, Knowlson S, Sculthorpe R, Farthing D, DeWilde C, Farthing CA, Larus TL, Martin E, Brophy DF, Gupta S; Medical Respiratory Intensive Care Unit Nursing, Fisher BJ, Natarajan R. Phase I safety trial of intravenous ascorbic acid in patients with severe sepsis. J Transl Med. 2014 Jan 31;12:32.
- 4. Zabet MH, Mohammadi M, Ramezani M, Khalili H. Effect of High-dose Ascorbic acid on vasopressor's requirement in septic shock. J Res Pharm Pract 2016;5:94-100.
- Fowler AA, Truwit JD, Hite RD, et al. Effect of Vitamin C Infusion on Organ Failure and Biomarkers of Inflammation and Vascular Injury in Patients With Sepsis and Severe Acute Respiratory Failure: The CITRIS-ALI Randomized Clinical Trial. JAMA. 2019;322(13):1261–1270. doi:10.1001/jama.2019.11825
- 6. Fujii T, Luethi N, Young PJ, et al. Effect of Vitamin C, Hydrocortisone, and Thiamine vs Hydrocortisone Alone on Time Alive and Free of Vasopressor Support Among Patients With Septic Shock: The VITAMINS Randomized Clinical Trial. JAMA. 2020;323(5):423–431. doi:10.1001/jama.2019.22176
- Chang, P.; Liao, Y.; Guan, J.; Guo, Y.; Zhao, M.; Hu, J.; Zhou, J.; Wang, H.; Cen, Z.; Tang, Y.; Liu, Z. Combined Treatment With Hydrocortisone, Vitamin C, and Thiamine for Sepsis and Septic Shock: A Randomized Controlled Trial. Chest 2020, 158 (1), 174–182. https://doi.org/10.1016/j.chest.2020.02.065.
- Hwang, S. Y.; Ryoo, S. M.; Park, J. E.; Jo, Y. H.; Jang, D.-H.; Suh, G. J.; Kim, T.; Kim, Y.-J.; Kim, S.; Cho, H.; Jo, I. J.; Chung, S. P.; Choi, S.-H.; Shin, T. G.; Kim, W. Y. Combination Therapy of Vitamin C and Thiamine for Septic Shock: a Multi-Centre, Double-Blinded Randomized, Controlled Study. Intensive care medicine 2020, 1–11. https://doi.org/10.1007/s00134-020-06191-3.
- Iglesias J, Vassallo AV, Patel VV, Sullivan JB, Cavanaugh J, Elbaga Y. Outcomes of Metabolic Resuscitation Using Ascorbic Acid, Thiamine, and Glucocorticoids in the Early Treatment of Sepsis: The ORANGES Trial. Chest. 2020 Jul;158(1):164-173. doi: 10.1016/j.chest.2020.02.049. Epub 2020 Mar 17. PMID: 32194058.
- 10. Lv SJ, Zhang GH, Xia JM, Yu H, Zhao F. Early use of high-dose vitamin C is beneficial in treatment of sepsis. Ir J Med Sci. 2020.
- Mohamed ZU, Prasannan P, Moni M, et al. Vitamin C Therapy for Routine Care in Septic Shock (ViCTOR) Trial: Effect of Intravenous Vitamin C, Thiamine, and Hydrocortisone Administration on Inpatient Mortality among Patients with Septic Shock. Indian J Crit Care Med. 2020;24(8):653-661
- 12. Moskowitz, A.; Huang, D. T.; Hou, P. C.; Gong, J.; Doshi, P. B.; Grossestreuer, A. V.; Andersen, L. W.; Ngo, L.; Sherwin, R. L.; Berg, K. M.; Chase, M.; Cocchi, M. N.; McCannon, J. B.; Hershey, M.; Hilewitz, A.; Korotun, M.; Becker, L. B.; Otero, R. M.; Uduman, J.; Sen, A.; Donnino, M. W. Effect of Ascorbic Acid, Corticosteroids, and Thiamine on Organ Injury in Septic Shock: The ACTS Randomized Clinical Trial. JAMA : the journal of the American Medical Association 2020, 324 (7), 642–650. <u>https://doi.org/10.1001/jama.2020.11946</u>.

- 13. Wani SJ, Mufti SA, Jan RA, Shah SU, Qadri SM, Khan UH, Bagdadi F, Mehfooz N, Koul PA. Combination of vitamin C, thiamine and hydrocortisone added to standard treatment in the management of sepsis: results from an open label randomised controlled clinical trial and a review of the literature. Infect Dis (Lond). 2020 Apr;52(4):271-278. doi: 10.1080/23744235.2020.1718200. Epub 2020 Jan 28. PMID: 31990246.
- 14. Zhang J, Rao X, Li Y, Zhu Y, Liu F, Guo G, Luo G, Meng Z, De Backer D, Xiang H, Peng Z. Pilot trial of high-dose vitamin C in critically ill COVID-19 patients. Ann Intensive Care. 2021 Jan 9;11(1):5. doi: 10.1186/s13613-020-00792-3. PMID: 33420963; PMCID: PMC7794643.
- 15. Sevransky JE, Rothman RE, Hager DN, et al. Effect of Vitamin C, Thiamine, and Hydrocortisone on Ventilator- and Vasopressor-Free Days in Patients With Sepsis: The VICTAS Randomized Clinical Trial. JAMA. 2021;325(8):742–750. doi:10.1001/jama.2020.24505

### Newly included

16. Hussein AA, Sabry NA, Abdalla MS, Farid SF. A prospective, randomised clinical study comparing triple therapy regimen to hydrocortisone monotherapy in reducing mortality in septic shock patients. Int J Clin Pract. 2021;75(9):e14376. doi:10.1111/ijcp.14376

# **Excluded Studies**

| No | References                                                                                                                                                                                                                                                                                                                                                         | Reason for exclusion              |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| 1  | Berger MM, Soguel L, Shenkin A, et al. Influence of early antioxidant supplements on clinical evolution<br>and organ function in critically ill cardiac surgery, major trauma, and subarachnoid hemorrhage patients.<br>Crit Care. 2008;12(4):R101. doi:10.1186/cc6981                                                                                             | Abstract only                     |
| 2  | Qiao X Kashiouris MG, Truwit JD, Hite RD, Morris PE, Martin GS, Fowler AA FB, X. Q, B. F, et al. Effects of high dose intravenous vitamin C (IVC) on plasma cell-free DNA levels in patients with sepsis-associated ARDS. Am J Respir Crit Care Med. 2019;199(9). https://www.atsjournals.org/doi/abs/10.1164/ajrccm-conference.2019.199.1_MeetingAbstracts.A2100. | Abstract only                     |
| 3  | Bernardo, Roberto; Toschi, Marcus; Mathew, Julia; Saksouk, Bassel; Awab, Ahmed 1439: USE OF<br>VITAMIN C IN PATIENTS WITH MILD SEPTIC SHOCK: A PILOT STUDY, Critical Care Medicine: January 2018<br>- Volume 46 - Issue 1 - p 703 doi: 10.1097/01.ccm.0000529441.66004.1e                                                                                          | Abstract only                     |
| 4  | A Rogobete, O Bedreag, C Cradigati, M Sarandan, S Popovici, D Sandesc. Influence of antioxidant therapy with high dose of vitamin c on mortality rates in critically ill polytrauma patients. Crit Care. 2018;22(Supplement 1). doi:10.1186/s13054-018-1973-5                                                                                                      | Abstract only                     |
| 5  | Black D, Black S. Vitamin-C And Thiamine Have Significant Treatment Effects Suppressing Mortality<br>Amongst Heterogeneous Critical-Care-Patients: Implications For Preventing Patient Deterioration. Chest.<br>2020;157(6 Supplement):A123. doi:http://dx.doi.org/10.1016/j.chest.2020.05.138                                                                     | Abstract only                     |
| 6  | Gayathri Ranie AP. Effect of supplementation of vitamin c and thiamine on the outcome of sepsis. <i>Indian J Crit care Med</i> . 2020;24(SUPPL 2):S59. doi:http://dx.doi.org/10.5005/jp-journals-10071-23353.181                                                                                                                                                   | Abstract only                     |
| 7  | Hegazy, Samir; Helmy, Tamer; Zaher, Humadi 337, Critical Care Medicine: December 2014 - Volume 42 -<br>Issue 12 - p A1441 doi: 10.1097/01.ccm.0000457834.67738.b7                                                                                                                                                                                                  | Abstract only                     |
| 8  | Mishra M. Study of high-dose ascorbic acid on vasopressor's requirement in septic shock patients: A surgical intensive care unit study. <i>Indian J Crit Care Med</i> . 2020;24(Suppl 2):S11. doi:10.5005/jp-journals-10071-23353.31                                                                                                                               | Abstract only                     |
| 9  | Monica Rahardjo, Theresia1; Redjeki, Ike2; Maskoen, Tinni2 1119, Critical Care Medicine: December 2013 - Volume 41 - Issue 12 - p A283 doi: 10.1097/01.ccm.0000440354.99718.28                                                                                                                                                                                     | Abstract only                     |
| 10 | Galley HF, Howdle PD, Walker BE, Webster NR. The effects of intravenous antioxidants in patients with septic shock. Free Radic Biol Med. 1997;23(5):768-774. doi:10.1016/s0891-5849(97)00059-2                                                                                                                                                                     | Combined N-acetylcysteine & vit C |
| 11 | Aisa-Alvarez A, Soto ME, Guarner-Lans V, et al. Usefulness of Antioxidants as Adjuvant Therapy for Septic<br>Shock: A Randomized Clinical Trial. Medicina (Kaunas). 2020;56(11):619. Published 2020 Nov 17.<br>doi:10.3390/medicina56110619                                                                                                                        | Combined N-acetylcysteine & vit C |

| 12 | Palli E, Makris D, Papanikolaou J, et al. The impact of N-acetylcysteine and ascorbic acid in contrast-<br>induced nephropathy in critical care patients: an open-label randomized controlled study. <i>Crit Care</i> .<br>2017;21(1):269. Published 2017 Oct 31. doi:10.1186/s13054-017-1862-3             | Combined N-acetylcysteine & vit C |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| 13 | Porter JM, Ivatury RR, Azimuddin K, Swami R. Antioxidant therapy in the prevention of organ dysfunction syndrome and infectious complications after trauma: early results of a prospective randomized study [published correction appears in Am Surg 1999 Sep;65(9):902]. Am Surg. 1999;65(5):478-483.      | Combined N-acetylcysteine & vit C |
| 14 | Sateesh J, Bhardwaj P, Singh N, Saraya A. Effect of antioxidant therapy on hospital stay and complications in patients with early acute pancreatitis: a randomised controlled trial. Trop Gastroenterol. 2009;30(4):201-206.                                                                                | Combined N-acetylcysteine & vit C |
| 15 | Sadeghpour A, Alizadehasl A, Kyavar M, et al. Impact of vitamin C supplementation on post-cardiac surgery ICU and hospital length of stay. Anesth Pain Med. 2015;5(1):e25337. Published 2015 Feb 19. doi:10.5812/aapm.25337                                                                                 | Elective surgery patients         |
| 16 | Grossestreuer A V, Moskowitz A, Andersen LW, et al. Effect of Ascorbic Acid, Corticosteroids, and<br>Thiamine on Health-Related Quality of Life in Sepsis. Crit care Explor. 2020;2(12):e0270.<br>doi:https://dx.doi.org/10.1097/CCE.000000000000270                                                        | Further analysis of Moskowitz     |
| 17 | Carr AC. Vitamin C administration in the critically ill: a summary of recent meta-analyses. Crit Care. 2019;23(1):265. Published 2019 Jul 30. doi:10.1186/s13054-019-2538-y                                                                                                                                 | Meta-analysis                     |
| 18 | Hemilä H, Chalker E. Vitamin C Can Shorten the Length of Stay in the ICU: A Meta-Analysis. <i>Nutrients</i> . 2019 Mar 27;11(4):708. doi: 10.3390/nu11040708.                                                                                                                                               | Meta-analysis                     |
| 19 | Hemilä H, Chalker E. Vitamin C may reduce the duration of mechanical ventilation in critically ill patients:<br>a meta-regression analysis. J Intensive Care. 2020;8:15. Published 2020 Feb 7. doi:10.1186/s40560-020-<br>0432-y                                                                            | meta-analysis                     |
| 20 | Langlois PL, Manzanares W, Adhikari NKJ, Lamontagne F, Stoppe C, Hill A, Heyland DK. Vitamin C<br>Supplementation in the Critically III: A Systematic Review and Meta-Analysis. JPEN J Parenter Enteral<br>Nutr. 2018 Nov 19.                                                                               | Meta-analysis                     |
| 21 | Lin, J.C., Li, H., Wen, Y. and Zhang, M.W. (2018) Adjuvant Administration of Vitamin C Improves Mortality of Patients with Sepsis and Septic Shock: A Systems Review and Meta-Analysis. <i>Open J Intern Med</i> , 8, 146-159. https://doi.org/10.4236/ojim.2018.82015                                      | Meta-analysis                     |
| 22 | Putzu A, Daems AM, Lopez-Delgado JC, Giordano VF, Landoni G. The Effect of Vitamin C on Clinical<br>Outcome in Critically III Patients: A Systematic Review With Meta-Analysis of Randomized Controlled<br>Trials. Crit Care Med. 2019 Jun;47(6):774-783. doi: 10.1097/CCM.000000000003700. PMID: 30839358. | Meta-analysis                     |
| 23 | Scholz SS, Borgstedt R, Ebeling N, Menzel LC, Jansen G, Rehberg S. Mortality in septic patients treated with vitamin C: a systematic meta-analysis. Crit Care. 2021;25(1):17. Published 2021 Jan 6. doi:10.1186/s13054-020-03438-9                                                                          | Meta-analysis                     |

| 24 | Wang Y, Lin H, Lin BW, Lin JD. Effects of different ascorbic acid doses on the mortality of critically ill patients: a meta-analysis. <i>Ann Intensive Care</i> . 2020;9(1):58. doi: 10.1186/s13613-019-0532-9.                                                                                                                                                                                                       | Meta-analysis                                                   |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| 25 | Zhang M, Jativa DF. Vitamin C supplementation in the critically ill: A systematic review and meta-analysis.<br>SAGE Open Med. 2018 Oct 19;6:2050312118807615. doi: 10.1177/2050312118807615.                                                                                                                                                                                                                          | Meta-analysis                                                   |
| 26 | Rümelin A, Jaehde U, Kerz T, Roth W, Krämer M, Fauth U. Early postoperative substitution procedure of the antioxidant ascorbic acid. J Nutr Biochem. 2005;16(2):104-108. doi:10.1016/j.jnutbio.2004.10.005                                                                                                                                                                                                            | Elective surgical patients                                      |
| 27 | Ferrón-Celma I, Mansilla A, Hassan L, et al. Effect of vitamin C administration on neutrophil apoptosis in septic patients after abdominal surgery. J Surg Res. 2009;153(2):224-230. doi:10.1016/j.jss.2008.04.024                                                                                                                                                                                                    | No clinical outcome                                             |
| 28 | Hudson EP, Collie JT, Fujii T, Luethi N, Udy AA, Doherty S, Eastwood G, Yanase F, Naorungroj T, Bitker L,<br>Abdelhamid YA, Greaves RF, Deane AM, Bellomo R. Pharmacokinetic data support 6-hourly dosing of<br>intravenous vitamin C to critically ill patients with septic shock. Crit Care Resusc. 2019 Dec;21(4):236-42.<br>PMID: 31778629.                                                                       | No clinical outcome                                             |
| 29 | Zhang C, Li JM, Hu JL, Zhou X. The effects of large doses of vitamin C and vitamin E on nerve injury, neurotrophic and oxidative stress in patients with acute craniocerebral injury. J Acute Dis 2018;7:69-73                                                                                                                                                                                                        | No clinical outcome. VIt E was given concomitantly              |
| 30 | de Grooth HJ, Manubulu-Choo WP, Zandvliet AS, Spoelstra-de Man AME, Girbes AR, Swart EL,<br>Oudemans-van Straaten HM. Vitamin C Pharmacokinetics in Critically III Patients: A Randomized Trial of<br>Four IV Regimens. Chest. 2018 Jun;153(6):1368-1377. doi: 10.1016/j.chest.2018.02.025. Epub 2018 Mar<br>6. PMID: 29522710.                                                                                       | No nutrition support involved or clinically important end point |
| 31 | Duffy MJ, O'Kane CM, Stevenson M, et al. A randomized clinical trial of ascorbic acid in open abdominal aortic aneurysm repair. Intensive Care Med Exp. 2015;3(1):50. doi:10.1186/s40635-015-0050-5                                                                                                                                                                                                                   | Not critically ill patients                                     |
| 32 | Emadi N, Nemati MH, Ghorbani M, et al. The Effect of High-Dose Vitamin C on Biochemical Markers of Myocardial Injury in Coronary Artery Bypass Surgery. <i>Brazilian J Cardiovasc Surg</i> . 2019;34(5):517-524. doi:https://dx.doi.org/10.21470/1678-9741-2018-0312                                                                                                                                                  | Not critically ill patients                                     |
| 33 | Yanase F, Bitker L, Hessels L, Osawa E, Naorungroj T, Cutuli SL, Young PJ, Ritzema J, Hill G, Latimer-Bell C,<br>Hunt A, Eastwood GM, Hilton A, Bellomo R. A Pilot, Double-Blind, Randomized, Controlled Trial of High-<br>Dose Intravenous Vitamin C for Vasoplegia After Cardiac Surgery. J Cardiothorac Vasc Anesth. 2020<br>Feb;34(2):409-416. doi: 10.1053/j.jvca.2019.08.034. Epub 2019 Aug 24. PMID: 31526557. | Not critically ill patients (4% control group mortality)        |
| 34 | Du WD, Yuan ZR, Sun J, et al. Therapeutic efficacy of high-dose vitamin C on acute pancreatitis and its potential mechanisms. World J Gastroenterol. 2003;9(11):2565-2569. doi:10.3748/wjg.v9.i11.2565                                                                                                                                                                                                                | Not ICU patients                                                |
| 35 | Crimi E, Liguori A, Condorelli M, et al. The beneficial effects of antioxidant supplementation in enteral feeding in critically ill patients: a prospective, randomized, double-blind, placebo-controlled trial. Anesth Analg. 2004;99(3):857-863. doi:10.1213/01.ANE.0000133144.60584.F6                                                                                                                             | Not IV. VIt E was given<br>concomitantly                        |

| 36 | Raghu K, Ramalingam K. Safety and Efficacy of Vitamin C, Vitamin B1, and Hydrocortisone in clinical        | Not RCT                          |
|----|------------------------------------------------------------------------------------------------------------|----------------------------------|
|    | outcome of septic shock receiving standard care: A quasi experimental randomized open label two arm        |                                  |
|    | parallel group study. Eur J Mol Clin Med. 2021;8(2):873-891.                                               |                                  |
| 37 | Nabil Habib T, Ahmed I (2017) Early Adjuvant Intravenous Vitamin C Treatment in Septic Shock may           | Pseudorandomized trial           |
|    | Resolve the Vasopressor Dependence. Int J Microbiol Adv Immunol. 05(1), 77-81. doi:                        |                                  |
|    | http://dx.doi.org/10.19070/2329-9967-1700015                                                               |                                  |
| 38 | Tanaka H, Matsuda T, Miyagantani Y, Yukioka T, Matsuda H, Shimazaki S. Reduction of resuscitation fluid    | Pseudorandomized trial           |
|    | volumes in severely burned patients using ascorbic acid administration: a randomized, prospective study.   |                                  |
|    | Arch Surg. 2000 Mar;135(3):326-31.                                                                         |                                  |
| 39 | Balakrishnan M, Gandhi H, Shah K, et al. Hydrocortisone, Vitamin C and thiamine for the treatment of       | The number of mortality / number |
|    | sepsis and septic shock following cardiac surgery. Indian J Anaesth. 2018;62(12):934-939.                  | randomized in each group is not  |
|    | doi:10.4103/ija.IJA_361_18                                                                                 | reported (Author did not respond |
|    |                                                                                                            | to email)                        |
| 40 | Bansal D, Bhalla A, Bhasin DK, et al. Safety and efficacy of vitamin-based antioxidant therapy in patients | VIt A and E was given            |
|    | with severe acute pancreatitis: a randomized controlled trial. Saudi J Gastroenterol. 2011;17(3):174-179.  | concomitantly                    |
|    | doi:10.4103/1319-3767.80379                                                                                |                                  |
| 41 | Abdoulhossein D, Taheri I, Saba MA, Akbari H, Shafagh S, Zataollah A. Effect of vitamin C and vitamin E    | VIt E was given concomitantly    |
|    | on lung contusion: A randomized clinical trial study. Ann Med Surg (Lond). 2018;36:152-157. Published      |                                  |
|    | 2018 Nov 9. doi:10.1016/j.amsu.2018.10.026                                                                 |                                  |
| 42 | Reddy PR, Samavedam S, Aluru N, Yelle S, Rajyalakshmi B. Metabolic Resuscitation Using Hydrocortisone,     | No clinical outcome              |
|    | Ascorbic Acid, and Thiamine: Do Individual Components Influence Reversal of Shock Independently?.          |                                  |
|    | Indian J Crit Care Med. 2020;24(8):649-652. doi:10.5005/jp-journals-10071-23515                            |                                  |
| 43 | Majidi N, Rabbani F, Gholami S, et al. The Effect of Vitamin C on Pathological Parameters and Survival     | Not IV                           |
|    | Duration of Critically III Coronavirus Disease 2019 Patients: A Randomized Clinical Trial. Front Immunol.  |                                  |
|    | 2021;12:717816. Published 2021 Dec 15. doi:10.3389/fimmu.2021.717816                                       |                                  |